Jyothi Engineering College, Cheruthuruthy SECOND SESSIONAL EXAMINATION

Semester 5, November 2019

(Department of Electrical & Electronics Engineering) EE365- DIGITAL SYSTEM DESIGN (KTU Scheme)

Time: 90 minutes

Max Marks: 50

PARTA

(Answer all questions

Q No.	Questions	Marks	co	Bloom's Taxonomy level
	Compare ASM chart and Conventional Flow Chart	5	3	2
2	describing synchronous sequential circuits? Facility	5	3,4	2
3	circuit? (Assume necessary data if Required)	5	4	3
4	Write VHDL Code for Negative edge triggered T FF? (Assume necessary data if Required)	5	4	3

PART B

(Answer | question out of 2)

Q No.	Questions	Marks	со	Bloom's Taxonomy level
5	Explain basic elements used in ASM Chart?	10	3	2
6	Design and draw ASM chart for even parity generator which adds a parity bit to every 3 bits of message? (Assume necessary data if Required)	10	3	3

PART C

(Answer 1 question out of 2)

Q No.	Questions	Marks	co	Bloom's Taxonomy level
7	Write VHDL Code for 4 bit ripple counter? (Assume necessary data if Required)		4	3
8	Write VHDL code for sequential Multiplier (Assume necessary data if Required)	10	4	3

PART D

(Answer 1 question out of 2)

Q No.	Questions	Marks	co	Bloom's Taxonomy level
9	Design BCD counter and hence draw ASM chart and VHDL code for the same? (Assume necessary data if		3	,
10	Write VHDL code for Dynamic RAM (Assume necessary data if Required)	10	4	3

a All the Best

Dr. SUNNY JOSEPH KALAYATHANKAL

M. Tech, MCA, M.Sc, M.Phil, B.Ed

Ph.D (Computer Science), Ph.D (Maths)

PRINCIPAL

Ivothi Engineering College

Jyothi Engineering College Cheruthuruthy P.O.-679 531

n . 11	MT_	-				
Roll	110		 	 		

Jyothi Engineering College, Cheruthuruthy FIRST SESSIONAL EXAMINATION

Semester 5, October 2020

(Electronics & Communication Engineering)
EC363: Optimization Techniques
(KTU Scheme)

Time: 60 minutes

Max Marks:40

INSTRUCTIONS

- There are three sections in the question paper representing two modules
- There are two questions of 10 marks each in each section
- A total of four questions are to be answered out of the six questions given, but at least one question should be answered from each section.
- After the completion of examination the answer sheets should be uploaded in the google classroom within the stipulated time (09:30 am 09:40 am). In case of network issues, submission can be done through whatsapp as per the directions from the teachers.

								P	ART A			
Q No.					(Questi	ons			Marks	СО	BTL
1	Find	Basic	Feas	ible S	Solutio	on usi	ng N	orth-	West corner rule	10	3	2
			D_1	D_2	D_3	D ₄	D_5	D_6	Available		-	
		O ₁	1	2	1	4	3	2	30			
	•	O_2	3	3	2	1	4	3	50		=	
		O_3	4	2	5	9	6	2	75			
	-	O_4	3	. 1	7	3	4	6	20			
		teq	20	40	30	10	50	25				

Ph.D (Computer Science), Ph.D (Maths)
PRINCIPAL
Jyothi Engineering College
Cheruthuruthy P.O.- 679 531

SUNNY JOSEPH KALAYATHANKAL MATEGO, MCA, M.Sc, M.Phil, B.Ed

True Copy Attested

	ation p			al basi ing Vo	10	3	3				
			1	4	В	C	Availability				
	1			13	15	16	17				
	2			7	11	2	12				
	3			19	20	9	16				
	Req	uirem	ent	14	8	23					
							PART B				
Q Io.					Qı	estion	ns		Marks	СО	BTL
3							sufficient condition a single variable.		10	1	2
4		ving f			ether the e ^x ii)f(x)	10	1	2			
							PART C				
Q Io.					Qu	estion	ns		Marks	СО	BTL
5	Solve	Solve the transportation problem using MODI method								3	3
			D1	D2	D3	ai				-	-
		01	7	10	5	90					
		02	12	9	4	50					
		O3	7	3	11	80					
		04	9	5	7	60					
	CE .	bj	120	100	110					-	
6	Find	the ex x_2, x_3		point	s of th	ne fund	ction	Dr Si	10	1	2 AYATHANKA

True Copy Attested

PRINCIPAL Jyoth) Engineering College Cheruthuruthy P.O.- 679 531

Roll No:

Jyothi Engineering College, Cheruthuruthy

FIRST SESSIONAL EXAMINATION

Semester 3, October 2020

(Department of Civil Engineering) MAT201: Partial Differential Equations and Complex Analysis (KTU Scheme)

Time: 60 minutes

Max Marks: 40

INSTRUCTIONS

- There are three sections in the question paper representing two modules
- There are two questions of 10 marks each in each section
- A total of four questions are to be answered out of the six questions given, but at least one question should be answered from each section.
- After the completion of examination the answer sheets should be uploaded in the Google classroom within the stipulated time (09:30 am 09:40 am). In case of network issues, submission can be done through whatsapp as per the directions from the teachers.

PART A

Q No.	Questions	Marks	СО	BTL
1	Find the value of 'a' so that $u = xy + ax^2 - y^2$ is harmonic. Find its harmonic conjugate.	10	3	1, 2
2	Prove that an analytic function of constant modulus is constant.	10	3	1, 2

PART B

Q No.	Questions	Marks	СО	BTL
3	Using Cauchy's integral formula, evaluate $\int_{c} \frac{z^{2}}{(z-1)^{2}(z+2)} dz \text{where c is } z-2 = 2$	10	4	1,2
4	If $f(z) = \frac{1}{z+1}$, find the Taylor series at the point $z = 2$. Also find its region of validity.	10	4	1,2

PART C Dr. S

Dr. SUNNY JOSEPH KALAYATHANKAL M. Tech McA, M.Sc, M.Phil, B.Ed Ph.D (Computer Science), Ph.D (Maths) PRINCIPAL

Jyothi Engineering College Cheruthuruthy P.O.-679 531

Q No.	Questions	Marks	СО	BTL
5	Show that $\int_{c} z ^2 dz = -1 + i$ where c is the rectangle with vertices $(0,0)$, $(1,0)$, $(1,1)$ and $(0,1)$.	10	4	1,2
6	Find the image of the infinite strips (i) $\frac{1}{4} \le y \le \frac{1}{2}$ and (ii) $0 < y < \frac{1}{2}$ under the transformation $w = \frac{1}{z}$	10	3	1,2

***All the Best ***

Dr. SUNNY JOSEPH KALAYATHANKAL

M.Tech, MCA, M.Sc, M.Phil, B.Ed Ph.D (Computer Science), Ph.D (Maths) PRINCIPAL

Jyothi Engineering College Cheruthuruthy P.O.- 679 531

True Copy Attested